提高充电机充电电路设计的可靠性和抗干扰能力的方法
本文从最充电机充电电路基础、最常用的电子元器件和充电机充电电路基础充电机充电电路的着手,介绍充电机充电电路设计时应该注意的一些问题, 以提高所设计充电机充电电路的可靠性和抗干扰能力。
一、充电机充电电路基础元件
1、电阻。
1) 充电机充电电路基础概念
我们都知道, I = U/R这个公式, 也知道P = UI. 电阻是一种非储能元件, 它直接将电能转换成热能, 因此, 如果电阻上消耗的功率过大, 会导致其过热而烧毁。
2)充电机充电电路基础参数
阻值,精度,功率. 使用时我们应该注意以下一些问题:
在数字充电机充电电路中, 大部分对电阻的阻值要求不是很高(如大量使用的上拉和下拉电阻), 因此应该尽可能减少电阻的阻值的种类, 以方便采购和生产.
只有在对精度要求特别高的场合, 如充电机及运放的反馈电阻, 我们才选用高精度电阻(一般1%), 大部分场合我们选用5%精度的电阻就可以了.
在流过比较大的电流的充电机充电电路中, 我们应该好好计算一下电阻消耗的功率, 否则如果实际消耗的功率大于其额定功率会烧毁电阻。
2,充电机充电电容
1)充电机充电电路基础概念
我们该知道几个充电机充电电路基础的公式:
2)充电机充电电路特性参数
容值,精度,耐压值,泄漏电流,频率充电机充电电路特性. 在使用的时候, 我们应该要注意以下一些问题:
耐压值:施加在充电机充电电容上的电压如果高于其额定的所能承受的电压, 将会导致充电机充电电容击穿烧毁, 因此, 无论如何高于实际工作电压1.5倍以上的充电机充电电容耐压值,此充电机充电电容可选,否则电压一旦超过耐压值,充电机充电电容就容易被烧坏。
泄漏电流:泄漏电流是指在没有故障施加电压的情况下,电气中带相互绝缘的金属零件之间,或带电零件与接地零件之间,通过其周围介质或绝缘表面所形成的电流称为泄漏电流。极性充电机充电电容中又分为正向泄漏电流和反向泄漏电流,反向泄漏电流很大,当在极性充电机充电电容两端接上反向电压时,由于反向泄露电流很大,P=U·I,充电机充电电容则会被烧毁,这也就是极性充电机充电电容一定不能接反的原因。
频率充电机充电电路特性:实际充电机充电电路中,充电机充电电容等价于充电机充电电容与电阻并联再和电感串联。其在高频时呈感性,低频时呈容性。高频滤波用充电机充电电容量小的独石充电机充电电容,低频滤波时用充电机充电电容量大的电解充电机充电电容。
3,电感
1)充电机充电电路基础概念
电感是闭合回路的一种属性。当线圈通过电流后,在线圈中形成磁场感应,感应磁场又会产生感应电流来抵制通过线圈中的电流。这种电流与线圈的相互作用关系称为电的感抗,也就是电感,单位是“亨利(H)”
2)充电机充电电路特性参数
包括电感量,精度,饱和电流,工作频率,工作电流电感量,如图,电感为一根铁氧体磁芯和缠绕在其外部的铜导线组成,当没有磁芯时,电感量很小。
工作电流:在实际充电机充电电路中,电感等效于自身串联一个电阻,电流通过会产生涡流形成热量,电感太小,通过的电流就较大,W=1/2·L·i²,会导致过热烧毁电感。
4,二极管
1)充电机充电电路基础概念
二极管又称晶体二极管,简称二极管。它是一种具有单向传导电流的电子器件。
2)充电机充电电路特性参数
包括工作电流,正向导通电压,反向电压,正向导通时间,反向恢复时间
正向导通电压:外加正向电压时,在正向充电机充电电路特性的起始部分,正向电压很小,不足以克服PN结内电场的阻挡作用,正向电流几乎为零,这一段称为死区。这个不能使二极管导通的正向电压称为死区电压。当正向电压大于死区电压以后,PN结内电场被克服,二极管正向导通,电流随电压增大而迅速上升。在正常使用的电流范围内,导通时二极管的端电压几乎维持不变,这个电压称为二极管的正向导通电压。
反向电压:外加反向电压不超过一定范围时,通过二极管的电流是少数载流子漂移运动所形成反向电流。由于反向电流很小,二极管处于截止状态。如果反向电压过大,二极管就会被击穿。
正向导通时间和反向恢复时间:在实际数字充电机充电电路中,二极管的正向导通与反向回复都是需要一定的时间才能完成,为了提高充电机充电电路系统稳定性,我们要尽可能缩短导通与恢复时间,一般会用到肖特基二极管,俗称快速二极管。
5,三极管
1)充电机充电电路基础概念
半导体三极管又称“晶体三极管”或“晶体管”。是能起放大、振荡或开关等作用的半导体电子器件。
2)充电机充电电路特性参数
包括功耗,频率充电机充电电路特性
频率充电机充电电路特性:三极管有三种工作区间,截止区,放大区和饱和区。放大状态亦称为线性工作状态,Ic=ß·Ib,用在模拟充电机充电电路中。截止和饱和状态也称为开关状态,应用于数字充电机充电电路中。
6,充电机
实际充电机充电电路中,充电机存在内阻,相当于串联一个电阻,此时充电机输出电压就会有所下降,对充电机充电电路中的干扰不可忽略。
7,导线
实际充电机充电电路中,导线有一定的内阻,R=ρ·L/S,相当与电感与电阻串联,由于电感自身存在涡流效应,所以在充电机充电电路、尤其在高频充电机充电电路中,设计人员应当将导线设计尽量短,尽量粗。
二,充电机充电电路
1,三极管在充电机充电电路中应用
由金属导线和电气以及电子部件组成的导电回路,称其为充电机充电电路。
在三极管充电机充电电路中,有三种工作状态,即截止状态。放大状态和饱和状态。在模拟充电机充电电路中常用到线性放大状态,例如运算放大器;在数字充电机充电电路中常用到开关状态,即截止状态和饱和状态。如下图,
2,数字地与模拟地分开
在高要求充电机充电电路中,数字地与模拟地必需分开。即使是对于A/D、D/A转换器同一芯片上两种“地”最好也要分开,仅在系统一点上把两种“地”连接起来。
3,LDO(低压差分稳压器)
开关性蓄电池充电机的效率很高,但充电机输出纹波电压较高,噪声较大,电压调整率等性能也较差,特别是对模拟充电机充电电路供电时,将产生较大的影响。在开关性稳压器充电机输出端接入低压差线性稳压器,如图所示,就可以实现有源滤波,而且也可大大提高充电机输出电压的稳压精度,同时充电机系统的效率也不会明显降低。
4,PWM(脉冲宽度调制)
简称脉宽调制(PWM),是利用微处理器的数字充电机输出来对模拟充电机充电电路进行控制的一种非常有效的技术。
脉冲宽度调制是一种对模拟信号电平进行数字编码的方法。通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。只要带宽足够,任何模拟值都可以使用PWM进行编码。
根据公式Ui-Uo=L·ΔI/Ton和公式-Uo=L·ΔI/Toff得知充电机输出电压Uo
Uo=Ui·Ton/Toff。
5,充电机充电滤波电容
在输入充电机上,数字充电机充电电路干扰是一个一个小尖峰,不能用大充电机充电电容滤波,只能用小充电机充电电容;滤波充电机充电电容一大一小(小充电机充电电容滤除高频干扰,大充电机充电电容滤除低频干扰)一定要放在根部,不要放太远,也不要放在充电机充电电路板背面。
三,结语
实际上,在模拟充电机充电电路和数字充电机充电电路中除了上述干扰现象,还有一些干扰是依然存在的,例如充电机线电流变化产生的感应压降、充电机充电电路导线之间的相互干扰等。反映在数字信号处理系统中,其危害最大的是高频脉冲噪声,这些都需要我们在平时的充电机充电电路设计中加以考虑。希望我门通过上述探讨,为后续充电机充电电路系统设计及相关方面的工作打下基础。
- 上一篇:【DIY维修充电机】充电机一闪一闪不能充电原来是它坏了 2017/7/26
- 下一篇:为电动汽车蓄电池充电机充电建立下一目的地导向下的充电引导策略 2017/7/26